Robust chromatin state annotation

Author:

Foroozandeh Shahraki MehdiORCID,Farahbod MarjanORCID,Libbrecht Maxwell W.ORCID

Abstract

With the goal of mapping genomic activity, international projects have recently measured epigenetic activity in hundreds of cell and tissue types. Chromatin state annotations produced by segmentation and genome annotation (SAGA) methods have emerged as the predominant way to summarize these epigenomic data sets in order to annotate the genome. These chromatin state annotations are essential for many genomic tasks, including identifying active regulatory elements and interpreting disease-associated genetic variation. However, despite the widespread applications of SAGA methods, no principled approach exists to evaluate the statistical significance of chromatin state assignments. Here, we propose the first method for assigning calibrated confidence scores to chromatin state annotations. Toward this goal, we performed a comprehensive evaluation of the reproducibility of the two most widely used existing SAGA methods, ChromHMM and Segway. We found that their predictions are frequently irreproducible. For example, when applying the same SAGA method on two sets of experimental replicates, 27%–69% of predicted enhancers fail to replicate. This suggests that a substantial fraction of predicted elements in existing chromatin state annotations cannot be relied upon. To remedy this problem, we introduce SAGAconf, a method for assigning a measure of confidence (r-value) to chromatin state annotations. SAGAconf works with any SAGA method and assigns anr-value to each genomic bin of a chromatin state annotation that represents the probability that the label of this bin will be reproduced in a replicated experiment. Thus, SAGAconf allows a researcher to select only the reliable predictions from a chromatin annotation for use in downstream analyses.

Funder

Natural Sciences and Engineering Research Council of Canada

Compute Canada

Health Research BC

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3