Abstract
Abstract
Background
Neoantigens are critical for anti-tumor immunity and have been long-envisioned as promising therapeutic targets. However, current neoantigen analyses mostly focus on single nucleotide variations (SNVs) and indel mutations and seldom consider structural variations (SVs) that are also prevalent in cancer.
Results
Here, we develop a computational method termed NeoSV, which incorporates SV annotation, protein fragmentation, and MHC binding prediction together, to predict SV-derived neoantigens. Analysis of 2528 whole genomes reveals that SVs significantly contribute to the neoantigen repertoire in both quantity and quality. Whereas most neoantigens are patient-specific, shared neoantigens are identified with high occurrence rates in breast, ovarian, and gastrointestinal cancers. We observe extensive immunoediting on SV-derived neoantigens, especially on clonal events, which suggests their immunogenic potential. We also demonstrate that genomic alteration-related neoantigen burden, which integrates SV-derived neoantigens, depicts the tumor-immune interplay better than tumor neoantigen burden and may improve patient selection for immunotherapy.
Conclusions
Our study fills the gap in the current neoantigen repertoire and provides a valuable resource for cancer vaccine development.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Sino-Russian Mathematics Center
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献