A Subset of Microsatellite Unstable Cancer Genomes Prone to Short Insertions over Deletions Is Associated with Elevated Anticancer Immunity

Author:

Kim Sunmin123,Han Dong-Jin123,Lee Seo-Young123,Moon Youngbeen123,Kang Su Jung123,Kim Tae-Min1234

Affiliation:

1. Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

2. Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea

3. Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea

4. CMC Institute for Basic Medical Science, The Catholic Medical Center, The Catholic University of Korea, Seoul 06591, Republic of Korea

Abstract

Deficiencies in DNA mismatch repair (MMRd) leave characteristic footprints of microsatellite instability (MSI) in cancer genomes. We used data from the Cancer Genome Atlas and International Cancer Genome Consortium to conduct a comprehensive analysis of MSI-associated cancers, focusing on indel mutational signatures. We classified MSI-high genomes into two subtypes based on their indel profiles: deletion-dominant (MMRd-del) and insertion-dominant (MMRd-ins). Compared with MMRd-del genomes, MMRd-ins genomes exhibit distinct mutational and transcriptomic features, including a higher prevalence of T>C substitutions and related mutation signatures. Short insertions and deletions in MMRd-ins and MMRd-del genomes target different sets of genes, resulting in distinct indel profiles between the two subtypes. In addition, indels in the MMRd-ins genomes are enriched with subclonal alterations that provide clues about a distinct evolutionary relationship between the MMRd-ins and MMRd-del genomes. Notably, the transcriptome analysis indicated that MMRd-ins cancers upregulate immune-related genes, show a high level of immune cell infiltration, and display an elevated neoantigen burden. The genomic and transcriptomic distinctions between the two types of MMRd genomes highlight the heterogeneity of genetic mechanisms and resulting genomic footprints and transcriptomic changes in cancers, which has potential clinical implications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3