Author:
Jha Anupama,K. Aicher Joseph,R. Gazzara Matthew,Singh Deependra,Barash Yoseph
Abstract
AbstractDespite the success and fast adaptation of deep learning models in biomedical domains, their lack of interpretability remains an issue. Here, we introduce Enhanced Integrated Gradients (EIG), a method to identify significant features associated with a specific prediction task. Using RNA splicing prediction as well as digit classification as case studies, we demonstrate that EIG improves upon the original Integrated Gradients method and produces sets of informative features. We then apply EIG to identify A1CF as a key regulator of liver-specific alternative splicing, supporting this finding with subsequent analysis of relevant A1CF functional (RNA-seq) and binding data (PAR-CLIP).
Publisher
Springer Science and Business Media LLC
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献