Data Science Methods for Real-World Evidence Generation in Real-World Data

Author:

Liu Fang1

Affiliation:

1. Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, USA; email: fliu2@nd.edu

Abstract

In the healthcare landscape, data science (DS) methods have emerged as indispensable tools to harness real-world data (RWD) from various data sources such as electronic health records, claim and registry data, and data gathered from digital health technologies. Real-world evidence (RWE) generated from RWD empowers researchers, clinicians, and policymakers with a more comprehensive understanding of real-world patient outcomes. Nevertheless, persistent challenges in RWD (e.g., messiness, voluminousness, heterogeneity, multimodality) and a growing awareness of the need for trustworthy and reliable RWE demand innovative, robust, and valid DS methods for analyzing RWD. In this article, I review some common current DS methods for extracting RWE and valuable insights from complex and diverse RWD. This article encompasses the entire RWE-generation pipeline, from study design with RWD to data preprocessing, exploratory analysis, methods for analyzing RWD, and trustworthiness and reliability guarantees, along with data ethics considerations and open-source tools. This review, tailored for an audience that may not be experts in DS, aspires to offer a systematic review of DS methods and assists readers in selecting suitable DS methods and enhancing the process of RWE generation for addressing their specific challenges.

Publisher

Annual Reviews

Reference149 articles.

1. Real-world evidence;US Food and Drug Administration,2023

2. FDA approves abatacept for prophylaxis of acute graft versus host disease;US Food and Drug Administration,2021

3. Real-world data: a brief review of the methods, applications, challenges and opportunities;BMC Med. Res. Methodol,2022

4. From data mining to knowledge discovery in databases;AI Mag,1996

5. Uniqueness of medical data mining;Artif. Intel. Med.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3