A streamlined implementation of the glutamine synthetase-based protein expression system

Author:

Knox Rachel,Nettleship Joanne E,Chang Veronica T,Hui Zhao Kun,Santos Ana Mafalda,Rahman Nahid,Ho Ling-Pei,Owens Raymond J,Davis Simon J

Abstract

Abstract Background The glutamine synthetase-based protein expression system is widely used in industry and academia for producing recombinant proteins but relies on the cloning of transfected cells, necessitating substantial investments in time and handling. We streamlined the production of protein-producing cultures of Chinese hamster ovary cells using this system by co-expressing green fluorescent protein from an internal ribosomal entry site and selecting for high green fluorescent protein-expressing cells using fluorescence-activated cell sorting. Results Whereas other expression systems utilizing green fluorescent protein and fluorescence-activated cell sorting-based selection have relied on two or more sorting steps, we obtained stable expression of a test protein at levels >50% of that of an “average” clone and ~40% that of the “best” clone following a single sorting step. Versus clone-based selection, the principal savings are in the number of handling steps (reduced by a third), handling time (reduced by 70%), and the time needed to produce protein-expressing cultures (reduced by ~3 weeks). Coupling the glutamine synthetase-based expression system with product-independent selection in this way also facilitated the production of a hard-to-assay protein. Conclusion Utilizing just a single fluorescence-activated cell sorting-based selection step, the new streamlined implementation of the glutamine synthetase-based protein expression system offers protein yields sufficient for most research purposes, where <10 mg/L of protein expression is often required but relatively large numbers of constructs frequently need to be trialed.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3