Detection of the pediocin gene pedA in strains from human faeces by real-time PCR and characterization of Pediococcus acidilacticiUVA1

Author:

Mathys Sophie,von Ah Ueli,Lacroix Christophe,Staub Ernö,Mini Raffaella,Cereghetti Tania,Meile Leo

Abstract

Abstract Background Bacteriocin-producing lactic acid bacteria are commonly used as natural protective cultures. Among them, strains of the genus Pediococcus are particularly interesting for their ability to produce pediocin, a broad spectrum antimicrobial peptide with a strong antagonistic activity against the food-borne pathogen Listeria monocytogenes. Furthermore, there is increasing interest in isolating new bacteriocin-producing strains of human intestinal origin that could be developed for probiotic effects and inhibition of pathogenic bacteria in the gut. In this work, we typed a new strain, co-isolated from baby faeces together with a Bifidobacterium thermophilum strain, and characterized its proteinaceous compound with strong antilisterial activity. Results The newly isolated strain UVA1 was identified as a Pediococcus acidilactici by carbohydrate fermentation profile, growth at 50°C and 16S rDNA sequencing. The partially purified bacteriocin was heat resistant up to 100°C, active over a wide range of pH (2 to 9) and susceptible to proteolytic enzymes. The molecular weight, estimated by SDS-PAGE, was similar to that of pediocin AcH/PA-1 (4.5 kDa). P. acidilactici UVA1 harboured a 9.5-kb plasmid that could be cured easily, which resulted in the loss of the antimicrobial activity. Southern hybridization using the DIG-labelled pedA-probe established that the bacteriocin gene was plasmid-borne as for all pediocin described so far. Nucleotide sequence of the whole operon (3.5 kb) showed almost 100 % similarity to the pediocin AcH/PA-1 operon. The mRNA transcript for pedA could be detected in P. acidilactici UVA1 but not in the cured derivative, confirming the expression of the pedA-gene in UVA1. Using a new real-time PCR assay, eleven out of seventeen human faecal samples tested were found to contain pedA-DNA. Conclusion We identified and characterised the first pediocin produced by a human intestinal Pediococcus acidilactici isolate and successfully developed a new real-time PCR assay to show the large distribution of pedA-containing strains in baby faecal samples.

Publisher

Springer Science and Business Media LLC

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3