Abstract
Abstract
Background
Organic carbon stored in forest soils (SOC) represents an important element of the global C cycle. It is thought that the C storage capacity of the stable pool can be enhanced by increasing forest productivity, but empirical evidence in support of this assumption from forests differing in tree species and productivity, while stocking on similar substrate, is scarce.
Methods
We determined the stocks of SOC and macro-nutrients (nitrogen, phosphorus, calcium, potassium and magnesium) in nine paired European beech/Scots pine stands on similar Pleistocene sandy substrates across a precipitation gradient (560–820 mm∙yr− 1) in northern Germany and explored the influence of tree species, forest history, climate, and soil pH on SOC and nutrient pools.
Results
While the organic layer stored on average about 80% more C under pine than beech, the pools of SOC and total N in the total profile (organic layer plus mineral soil measured to 60 cm and extrapolated to 100 cm) were greater under pine by about 40% and 20%, respectively. This contrasts with a higher annual production of foliar litter and a much higher fine root biomass in beech stands, indicating that soil C sequestration is unrelated to the production of leaf litter and fine roots in these stands on Pleistocene sandy soils. The pools of available P and basic cations tended to be higher under beech. Neither precipitation nor temperature influenced the SOC pool, whereas tree species was a key driver. An extended data set (which included additional pine stands established more recently on former agricultural soil) revealed that, besides tree species identity, forest continuity is an important factor determining the SOC and nutrient pools of these stands.
Conclusion
We conclude that tree species identity can exert a considerable influence on the stocks of SOC and macronutrients, which may be unrelated to productivity but closely linked to species-specific forest management histories, thus masking weaker climate and soil chemistry effects on pool sizes.
Funder
Bundesministerium für Bildung und Forschung
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Reference70 articles.
1. Akatsuki M, Makita N (2020) Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations. Tree Physiol. doi.org/https://doi.org/10.1093/treephys/tpaa051
2. Akselsson C, Olsson J, Belyazid S, Capell R (2016) Can increased weathering rates due to future warming compensate for base cation losses following whole-tree harvesting in spruce forests? Biogeochemistry 128(1-2):89–105. https://doi.org/10.1007/s10533-016-0196-6
3. Ammer C, Bickel E, Kölling C (2008) Converting Norway spruce stands with beech – a rewiew of arguments and techniques. Austr J Forest Sci 125:3–26
4. Anders S, Beck W, Hornschuch F, Müller J, Steiner A (2004) Vom Kiefern-Reinbestand zum Kiefern-Buchen-Mischbestand. Beitr. Forstwirtsch. u. Landsch.ökol. 38: 55-67
5. Angst G, Messinger J, Greiner M, Häusler W, Hertel D, Kirfel K, Leuschner C, Rethemeyer J, Mueller CW (2018) Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol Biochem 122:19–30. https://doi.org/10.1016/j.soilbio.2018.03.026