Increasing Winter Temperatures Stimulate Scots Pine Growth in the North German Lowlands Despite Stationary Sensitivity to Summer Drought

Author:

Diers MarcoORCID,Leuschner Christoph,Dulamsuren Choimaa,Schulz Thore Christian,Weigel Robert

Abstract

AbstractMore than half of the forest area of the North German Lowlands is stocked with Scots pine-dominated forests, mostly plantations. Climate change suggests a declining suitability of Europe’s temperate zone for conifer plantations, but only a few studies have examined the long-term growth trends of Scots pine in relation to environmental and site factors in this region. We studied the radial growth patterns of Scots pine over the last 60 years at ten sites along a precipitation gradient (830–530 mm mean annual precipitation) from an oceanic to a subcontinental climate, analyzing the spatial and temporal variability of the climate sensitivity of growth to identify the main climatic factors influencing pine growth across this gradient, which covers a large part of the species’ tolerated precipitation range. Annual radial increment was sensitive to late-winter temperatures (February, March) and summer drought and heat (June–August), with sensitivity increasing from the oceanic to the drier continental sites. Warmer late-winter periods apparently have stimulated growth during the last decades, while the sensitivity to summer-drought has remained fairly stable. Until recently, the negative impact of warming summers on growth has been compensated by the positive effect of late-winter warming, resulting in stable (or increasing) growth trends. However, our comparison of the climate sensitivity across sites suggests that the drought effect compensation through winter warming will in future be limited by increasing drought exposure. Thus, future productivity declines are likely in the northern German lowlands despite warming winters, discouraging large-scale pine plantations in the face of climate warming.

Funder

Federal Ministry for Education and Research

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3