Dynamics of dead wood decay in Swiss forests

Author:

Hararuk OleksandraORCID,Kurz Werner A.,Didion Markus

Abstract

Abstract Background Forests are an important component of the global carbon (C) cycle and can be net sources or sinks of CO2, thus mitigating or exacerbating the effects of anthropogenic greenhouse gas emissions. While forest productivity is often inferred from national-scale yield tables or from satellite products, forest C emissions resulting from dead organic matter decay are usually simulated, therefore it is important to ensure the accuracy and reliability of a model used to simulate organic matter decay at an appropriate scale. National Forest Inventories (NFIs) provide a record of carbon pools in ecosystem components, and these measurements are essential for evaluating rates and controls of C dynamics in forest ecosystems. In this study we combine the observations from the Swiss NFIs and machine learning techniques to quantify the decay rates of the standing snags and downed logs and identify the main controls of dead wood decay. Results We found that wood decay rate was affected by tree species, temperature, and precipitation. Dead wood originating from Fagus sylvatica decayed the fastest, with the residence times ranging from 27 to 54 years at the warmest and coldest Swiss sites, respectively. Hardwoods at wetter sites tended to decompose faster compared to hardwoods at drier sites, with residence times 45–92 and 62–95 years for the wetter and drier sites, respectively. Dead wood originating from softwood species had the longest residence times ranging from 58 to 191 years at wetter sites and from 78 to 286 years at drier sites. Conclusions This study illustrates how long-term dead wood observations collected and remeasured during several NFI campaigns can be used to estimate dead wood decay parameters, as well as gain understanding about controls of dead wood dynamics. The wood decay parameters quantified in this study can be used in carbon budget models to simulate the decay dynamics of dead wood, however more measurements (e.g. of soil C dynamics at the same plots) are needed to estimate what fraction of dead wood is converted to CO2, and what fraction is incorporated into soil.

Funder

Swiss Federal Institute WSL

Natural Resources Canada

Publisher

Elsevier BV

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3