Effects of experimental canopy openness on wood-inhabiting fungal fruiting diversity across succession

Author:

Schreiber Jasper,Baldrian Petr,Brabcová Vendula,Brandl Roland,Kellner Harald,Müller Jörg,Roy Friederike,Bässler Claus,Krah Franz-SebastianORCID

Abstract

AbstractWhile the succession of terrestrial plant communities is well studied, less is known about succession on dead wood, especially how it is affected by environmental factors. While temperate forests face increasing canopy mortality, which causes considerable changes in microclimates, it remains unclear how canopy openness affects fungal succession. Here, we used a large real-world experiment to study the effect of closed and opened canopy on treatment-based alpha and beta fungal fruiting diversity. We found increasing diversity in early and decreasing diversity at later stages of succession under both canopies, with a stronger decrease under open canopies. However, the slopes of the diversity versus time relationships did not differ significantly between canopy treatments. The community dissimilarity remained mainly stable between canopies at ca. 25% of species exclusively associated with either canopy treatment. Species exclusive in either canopy treatment showed very low number of occupied objects compared to species occurring in both treatments. Our study showed that canopy loss subtly affected fungal fruiting succession on dead wood, suggesting that most species in the local species pool are specialized or can tolerate variable conditions. Our study indicates that the fruiting of the fungal community on dead wood is resilient against the predicted increase in canopy loss in temperate forests.

Funder

Deutsche Forschungsgemeinschaft

Grantová Agentura České Republiky

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3