Author:
Li Congrong,Song Jinling,Wang Jindi
Abstract
Abstract
Background
Determining the spatial distribution of tree heights at the regional area scale is significant when performing forest above-ground biomass estimates in forest resource management research. The geometric-optical mutual shadowing (GOMS) model can be used to invert the forest canopy structural parameters at the regional scale. However, this method can obtain only the ratios among the horizontal canopy diameter (CD), tree height, clear height, and vertical CD. In this paper, we used a semi-variance model to calculate the CD using high spatial resolution images and expanded this method to the regional scale. We then combined the CD results with the forest canopy structural parameter inversion results from the GOMS model to calculate tree heights at the regional scale.
Results
The semi-variance model can be used to calculate the CD at the regional scale that closely matches (mainly with in a range from − 1 to 1 m) the CD derived from the canopy height model (CHM) data. The difference between tree heights calculated by the GOMS model and the tree heights derived from the CHM data was small, with a root mean square error (RMSE) of 1.96 for a 500-m area with high fractional vegetation cover (FVC) (i.e., forest area coverage index values greater than 0.8). Both the inaccuracy of the tree height derived from the CHM data and the unmatched spatial resolution of different datasets will influence the accuracy of the inverted tree height. And the error caused by the unmatched spatial resolution is small in dense forest.
Conclusions
The semi-variance model can be used to calculate the CD at the regional scale, together with the canopy structure parameters inverted by the GOMS model, the mean tree height at the regional scale can be obtained. Our study provides a new approach for calculating tree height and provides further directions for the application of the GOMS model.
Funder
National Key Research and Development Program of China
Special Funds for Major State Basic Research Project
National Natural Science Foundation of China
National 863 Program
Subject
Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics,Forestry
Reference50 articles.
1. Breidenbach J, Næsset E, Lien V, Gobakken T, Solberg S (2010) Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens Environ 114(4):911–924
2. Carmean WH, Lenthall DJ (1989) Height-growth and site-index curves for jack pine in north central Ontario. Can J For Res 19(2):215–224
3. Chen E, Guo Z (2008) WATER: dataset of forest structure parameter survey at the super site around the Dayekou Guantan forest station. Heihe plan science data center. Institute of Forest Resource Information Techniques, Chinese Academy of Sciences, Heihe Plan Science Data Center, Beijing
4. Chen HYH, Klinka K, Kabzems RD (1998) Height growth and site index models for trembling aspen (Populus tremuloides Michx.) in northern British Columbia. Forest Ecol Manag 102(2):157–165
5. Dubayah RO, Sheldon SL, Clark DB, Hofton MA, Blair JB, Hurtt GC, Chazdon RL (2010) Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J Geophys Res Biogeo 115:G00E09
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献