Improved Mapping of Regional Forest Heights by Combining Denoise and LightGBM Method

Author:

Sang Mengting1,Xiao Hai2,Jin Zhili1,He Junchen1ORCID,Wang Nan1,Wang Wei1ORCID

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. The Second Surveying and Mapping Institute of Hunan Province, Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region, Ministry of Natural Resources, Changsha 410009, China

Abstract

Currently, the integration of satellite-based LiDAR (ICESat-2) and continuous remote sensing imagery has been extensively applied to mapping forest canopy height over large areas. A considerable fraction of low-quality photons exists in ICESAT-2/ATL08 products, which restricts the performance of regional canopy height estimation. To solve these problems, a Local Noise Removal-Light Gradient Boosting Machine (LNR-LGB) method was proposed in this study, which efficiently filtered the unreliable canopy photons in ATL08, constructed an extrapolation model by combining multiple remote sensing data, and finally mapped the 30 m forest canopy height of Hunan Province in 2020. To verify the feasibility of this method, the canopy parameters were also filtered based on ATL08 product attributes (traditional method), and the accuracy of the two models was compared using the 10-fold cross-validation. The conclusions were as follows: (1) compared with the traditional model, the overall accuracy of the LNR-LGB model was approximately doubled, in which R2 increased from 0.46 to 0.65 and RMSE decreased from 6.11 m to 3.48 m; (2) the forest height in Hunan Province ranged from 2.53 to 50.79 m with an average value of 18.34 m. The LNR-LGB method will provide a new concept for achieving high-accuracy mapping of regional forest height.

Funder

Department of Natural Resources of Hunan Province

Basic Science-Center Project of National Natural Science Foundation of China

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Key Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3