Author:
Georgieva Galina,Voigt Karsten,Peczek Anna,Mai Christian,Zimmermann Lars
Abstract
AbstractFocusing grating couplers for the excitation of the fundamental transverse-magnetic (TM) mode in integrated silicon photonic waveguides are designed and characterized under the boundary conditions of a photonic BiCMOS foundry. Two types of waveguide geometries are considered – a nanowire and a rib waveguide. Wafer-scale experimental results for nanowire TM grating couplers are in excellent agreement with numerical investigations and demonstrate a robust behavior on the wafer. The mean coupling loss and the 3σ interval are -3.9 ± 0.3 dB. The on wafer variation is three times lower than for the fundamental transverse-electric (TE) polarization. Similarly, the coupling in rib waveguides is examined as well. The results indicate that the rib waveguides require a modified geometry when designed for TM. In general, the nanowire waveguide type is more suitable for TM coupling, showing a stable and repeatable performance.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics
Reference32 articles.
1. Mekis, A., et al.: A CMOS Photonics Platform for High-Speed Optical Interconnects, IEEE Photonics Conference 2012, pp. 356–357. Burlingame, CA (2012)
2. Zimmermann, L., et al.: BiCMOS Silicon Photonics Platform, In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th4E.5
3. Yamada, K., et al.: In Guided Light in Silicon-Based Materials. In: Vivien, L., Pavesi, L. (eds). Handbook of Silicon Photonics Series in Optics and Optoelectronics, p. 55. CRC Press (2013)
4. Wang, J., Yao, Z., Lei, T., Poon, A.W.: Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions. Sci Rep. 4, 7528 (2014). https://doi.org/10.1038/srep07528
5. Kim, H., Yu, M.: Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express. 24, 9501–9510 (2016)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献