Autocompensating measurement-device-independent quantum cryptography in space division multiplexing optical fibers
-
Published:2021-09-09
Issue:1
Volume:17
Page:
-
ISSN:1990-2573
-
Container-title:Journal of the European Optical Society-Rapid Publications
-
language:en
-
Short-container-title:J. Eur. Opt. Soc.-Rapid Publ.
Author:
Liñares J.ORCID, Carral G. M., Prieto-Blanco X., Balado D.
Abstract
AbstractSingle photon or biphoton states propagating in optical fibers or in free space are affected by random perturbations and imperfections that disturb the information encoded in such states and accordingly quantum key distribution is prevented. We propose three different systems for autocompensating such random perturbations and imperfections when a measurement-device-independent protocol is used. These systems correspond to different optical fibers intended for space division multiplexing and supporting collinear modes, polarization modes or codirectional modes such as few-mode optical fibers and multicore optical fibers. Accordingly, we propose different Bell-states measurement devices located at Charlie system and present simulations that confirm the importance of autocompensation. Moreover, these types of optical fibers allow the use of several transmission channels, which compensates the reduction of the bit rate due to losses.
Funder
Xunta de Galicia, Conseller?a de Educaci?n, Universidades e FP Xunta de Galicia, Conseller?a de Educaci?n, Universidades e FP (ES) and European Social Fund
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics
Reference37 articles.
1. Bai, N., Ip, E., Huang, Y. -K., Mateo, E., Yaman, F., Li, M. -J., Bickham, S., Ten, S., Liñares, J., Montero, C., Moreno, V., Prieto, X., Tse, V., Chung, K. M., Lau, A. P. T., Tam, H. -Y., Lu, C., Luo, Y., Peng, G. -D., Li, G., Wang, T.: Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express. 20(3), 2668–2680 (2012). 2. Saitoh, K., Matsuo, S.: Multicore fiber technology. J. Lightwave Tech. 34, 55–66 (2016). 3. Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P. W. R., Przysiezna, A., Gómez, E. S., Figueroa, M., Vallone, G., Villoresi, P., da Silva, T. F., Xavier, G. B., Lima, G.: High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A. 96, 022317 (2017). https://doi.org/10.1103/PhysRevA.96.022317. 4. Ding, Y., Bacco, D., Dalgaard, K., Cai, X., Zhou, X., Rottwitt, K., Oxenløwe, L. K.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 3, 25 (2017). 5. Bacco, D., Da Lio, B., Cozzolino, D., Da Ros, F., Guo, X., Ding, Y., Sasaki, Y., Aikawa, K., Miki, S., Terai, H., Yamashita, T., Neergaard-Nielsen, J. S., Galili, M., Rottwitt, K., Andersen, U. L., Morioka, T., Oxenløwe, L. K.: Boosting the secret key rate in a shared quantum and classical fibre communication system. Commun. Phys. 2, 140 (2019).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|