Improving preoperative prediction of surgery duration

Author:

Riahi Vahid,Hassanzadeh Hamed,Khanna Sankalp,Boyle Justin,Syed Faraz,Biki Barbara,Borkwood Ellen,Sweeney Lianne

Abstract

Abstract Background Operating rooms (ORs) are one of the costliest units in a hospital, therefore the cumulative consequences of any kind of inefficiency in OR management lead to a significant loss of revenue for the hospital, staff dissatisfaction, and patient care disruption. One of the possible solutions to improving OR efficiency is knowing a reliable estimate of the duration of operations. The literature suggests that the current methods used in hospitals, e.g., a surgeon’s estimate for the given surgery or taking the average of only five previous records of the same procedure, have room for improvement. Methods We used over 4 years of elective surgery records (n = 52,171) from one of the major metropolitan hospitals in Australia. We developed robust Machine Learning (ML) approaches to provide a more accurate prediction of operation duration, especially in the absence of surgeon’s estimation. Individual patient characteristics and historic surgery information attributed to medical records were used to train predictive models. A wide range of algorithms such as Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were tested for predicting operation duration. Results The results show that the XGBoost model provided statistically significantly less error than other compared ML models. The XGBoost model also reduced the total absolute error by 6854 min (i.e., about 114 h) compared to the current hospital methods. Conclusion The results indicate the potential of using ML methods for reaching a more accurate estimation of operation duration compared to current methods used in the hospital. In addition, using a set of realistic features in the ML models that are available at the point of OR scheduling enabled the potential deployment of the proposed approach.

Funder

Commonwealth Scientific and Industrial Research Organisation

Western Australia Department of Health

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of remaining surgery duration in laparoscopic videos based on visual saliency and the transformer network;The International Journal of Medical Robotics and Computer Assisted Surgery;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3