Prediction of remaining surgery duration in laparoscopic videos based on visual saliency and the transformer network

Author:

Loukas Constantinos1ORCID,Seimenis Ioannis1ORCID,Prevezanou Konstantina1ORCID,Schizas Dimitrios2ORCID

Affiliation:

1. Laboratory of Medical Physics Medical School National and Kapodistrian University of Athens Athens Greece

2. 1st Department of Surgery Laikon General Hospital Medical School National and Kapodistrian University of Athens Athens Greece

Abstract

AbstractBackgroundReal‐time prediction of the remaining surgery duration (RSD) is important for optimal scheduling of resources in the operating room.MethodsWe focus on the intraoperative prediction of RSD from laparoscopic video. An extensive evaluation of seven common deep learning models, a proposed one based on the Transformer architecture (TransLocal) and four baseline approaches, is presented. The proposed pipeline includes a CNN‐LSTM for feature extraction from salient regions within short video segments and a Transformer with local attention mechanisms.ResultsUsing the Cholec80 dataset, TransLocal yielded the best performance (mean absolute error (MAE) = 7.1 min). For long and short surgeries, the MAE was 10.6 and 4.4 min, respectively. Thirty minutes before the end of surgery MAE = 6.2 min, 7.2 and 5.5 min for all long and short surgeries, respectively.ConclusionsThe proposed technique achieves state‐of‐the‐art results. In the future, we aim to incorporate intraoperative indicators and pre‐operative data.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3