Statistical process monitoring to improve quality assurance of inpatient care

Author:

Hubig LenaORCID,Lack Nicholas,Mansmann Ulrich

Abstract

Abstract Background Statistical Process Monitoring (SPM) is not typically used in traditional quality assurance of inpatient care. While SPM allows a rapid detection of performance deficits, SPM results strongly depend on characteristics of the evaluated process. When using SPM to monitor inpatient care, in particular the hospital risk profile, hospital volume and properties of each monitored performance indicator (e.g. baseline failure probability) influence the results and must be taken into account to ensure a fair process evaluation. Here we study the use of CUSUM charts constructed for a predefined false alarm probability within a single process, i.e. a given hospital and performance indicator. We furthermore assess different monitoring schemes based on the resulting CUSUM chart and their dependence on the process characteristics. Methods We conduct simulation studies in order to investigate alarm characteristics of the Bernoulli log-likelihood CUSUM chart for crude and risk-adjusted performance indicators, and illustrate CUSUM charts on performance data from the external quality assurance of hospitals in Bavaria, Germany. Results Simulating CUSUM control limits for a false alarm probability allows to control the number of false alarms across different conditions and monitoring schemes. We gained better understanding of the effect of different factors on the alarm rates of CUSUM charts. We propose using simulations to assess the performance of implemented CUSUM charts. Conclusions The presented results and example demonstrate the application of CUSUM charts for fair performance evaluation of inpatient care. We propose the simulation of CUSUM control limits while taking into account hospital and process characteristics.

Publisher

Springer Science and Business Media LLC

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3