Abstract
Abstract
Background
To identify and rank the importance of key determinants of high medical expenses among breast cancer patients and to understand the underlying effects of these determinants.
Methods
The Oncology Care Model (OCM) developed by the Center for Medicare & Medicaid Innovation were used. The OCM data provided to Mount Sinai on 2938 breast-cancer episodes included both baseline periods and three performance periods between Jan 1, 2012 and Jan 1, 2018. We included 11 variables representing information on treatment, demography and socio-economics status, in addition to episode expenditures. OCM data were collected from participating practices and payers. We applied a principled variable selection algorithm using a flexible tree-based machine learning technique, Quantile Regression Forests.
Results
We found that the use of chemotherapy drugs (versus hormonal therapy) and interval of days without chemotherapy predominantly affected medical expenses among high-cost breast cancer patients. The second-tier major determinants were comorbidities and age. Receipt of surgery or radiation, geographically adjusted relative cost and insurance type were also identified as important high-cost drivers. These factors had disproportionally larger effects upon the high-cost patients.
Conclusions
Data-driven machine learning methods provide insights into the underlying web of factors driving up the costs for breast cancer care management. Results from our study may help inform population health management initiatives and allow policymakers to develop tailored interventions to meet the needs of those high-cost patients and to avoid waste of scarce resource.
Funder
Patient-Centered Outcomes Research Institute
National Cancer Institute
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献