Author:
von Wedel Philip,Hagist Christian
Abstract
Abstract
Background
Artificial Intelligence (AI)-based assistance tools have the potential to improve the quality of healthcare when adopted by providers. This work attempts to elicit preferences and willingness to pay for these tools among German radiologists. The goal was to generate insights for tool providers and policymakers regarding the development and funding of ideally designed and priced tools. Ultimately, healthcare systems can only benefit from quality enhancing AI when provider adoption is considered.
Methods
Since there is no established market for AI-based assistance tools in radiology yet, a discrete choice experiment was conducted. Respondents from the two major German professional radiology associations chose between hypothetical tools composed of five attributes and a no-choice option. The attributes included: provider, application, quality impact, time savings and price. A conditional logit model was estimated identifying preferences for attribute levels, the no-choice option, and significant subject-related interaction effects.
Results
114 respondents were included for analysis of which 46% were already using an AI-based assistance tool. Average adoption probability for an AI-based tool was 81% (95% CI 77.1% − 84.4%). Radiologists preferred a tool that assists in routine diagnostics performing at above-radiologist-level quality and saves 50% in diagnostics time at a price-point of €3 per study. The provider is not a significant factor in the decisions. Time savings were considered more important than quality improvements (i.e., detecting more anomalies).
Conclusions
Radiologists are overall willing to invest in AI-based assistance tools. Development, funding, and research regarding these tools should, however, consider providers’ preferences for features of immediate everyday and economic relevance like time savings to optimize adoption.
Funder
WHU - Otto Beisheim School of Management
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Minsky M. Steps toward artificial intelligence. Proceed IRE. 1961;49(1):8–30.
2. Shortliffe EH, Axline SG, Buchanan BG, Merigan TC, Cohen SN. An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res. 1973;6(6):544–60.
3. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94.
4. Tang Y-X, Tang Y-B, Peng Y, Yan K, Bagheri M, Redd BA, et al. Automated abnormality classification of chest radiographs using deep convolutional neural networks. NPJ Digital Med. 2020;3(1):1–8.
5. Gale W, Oakden-Rayner L, Carneiro G, Bradley AP, Palmer LJ. Detecting hip fractures with radiologist-level performance using deep neural networks. arXiv preprint arXiv:171106504. 2017.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献