An experimental machine learning study investigating the decision-making process of students and qualified radiographers when interpreting radiographic images

Author:

Rainey ClareORCID,Villikudathil Angelina T.,McConnell Jonathan,Hughes Ciara,Bond Raymond,McFadden SonyiaORCID

Abstract

AI is becoming more prevalent in healthcare and is predicted to be further integrated into workflows to ease the pressure on an already stretched service. The National Health Service in the UK has prioritised AI and Digital health as part of its Long-Term Plan. Few studies have examined the human interaction with such systems in healthcare, despite reports of biases being present with the use of AI in other technologically advanced fields, such as finance and aviation. Understanding is needed of how certain user characteristics may impact how radiographers engage with AI systems in use in the clinical setting to mitigate against problems before they arise. The aim of this study is to determine correlations of skills, confidence in AI and perceived knowledge amongst student and qualified radiographers in the UK healthcare system. A machine learning based AI model was built to predict if the interpreter was either a student (n = 67) or a qualified radiographer (n = 39) in advance, using important variables from a feature selection technique named Boruta. A survey, which required the participant to interpret a series of plain radiographic examinations with and without AI assistance, was created on the Qualtrics survey platform and promoted via social media (Twitter/LinkedIn), therefore adopting convenience, snowball sampling This survey was open to all UK radiographers, including students and retired radiographers. Pearson’s correlation analysis revealed that males who were proficient in their profession were more likely than females to trust AI. Trust in AI was negatively correlated with age and with level of experience. A machine learning model was built, the best model predicted the image interpreter to be qualified radiographers with 0.93 area under curve and a prediction accuracy of 93%. Further testing in prospective validation cohorts using a larger sample size is required to determine the clinical utility of the proposed machine learning model.

Funder

College of Radiographers Research Industry Partnership award Scheme

Publisher

Public Library of Science (PLoS)

Reference57 articles.

1. Applications of artificial intelligence (AI) in diagnostic radiology: a technography study;MH Mehrizi;European radiology,2021

2. HEE (2019) The Topol review. Preparing the healthcare workforce to deliver the digital future 1–48.

3. Artificial intelligence and augmented intelligence collaboration: regaining trust and confidence in the financial sector.;A Lui;Information & Communications Technology Law. Sep 2,2018

4. Complacency and bias in human use of automation: An attentional integration.;R Parasuraman;Human factors,2010

5. Automation bias: empirical results assessing influencing factors;K Goddard;International Journal of Medical Informatics,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3