Abstract
Abstract
Background
This study aims to validate the diagnostic accuracy of the International Ovarian Tumor Analysis (IOTA) the Assessment of Different NEoplasias in the adneXa (ADNEX) model in the preoperative diagnosis of adnexal masses in the hands of nonexpert ultrasonographers in a gynaecological oncology centre in China.
Methods
This was a single oncology centre, retrospective diagnostic accuracy study of 620 patients. All patients underwent surgery, and the histopathological diagnosis was used as a reference standard. The masses were divided into five types according to the ADNEX model: benign ovarian tumours, borderline ovarian tumours (BOTs), stage I ovarian cancer (OC), stage II-IV OC and ovarian metastasis. Receiver operating characteristic (ROC) curve analysis was used to evaluate the ability of the ADNEX model to classify tumours into different histological types with and without cancer antigen 125 (CA 125) results.
Results
Of the 620 women, 402 (64.8%) had a benign ovarian tumour and 218 (35.2%) had a malignant ovarian tumour, including 86 (13.9%) with BOT, 75 (12.1%) with stage I OC, 53 (8.5%) with stage II-IV OC and 4 (0.6%) with ovarian metastasis. The AUC of the model to differentiate benign and malignant adnexal masses was 0.97 (95% CI, 0.96–0.98). Performance was excellent for the discrimination between benign and stage II-IV OC and between benign and ovarian metastasis, with AUCs of 0.99 (95% CI, 0.99–1.00) and 0.99 (95% CI, 0.98–1.00), respectively. The model was less effective at distinguishing between BOT and stage I OC and between BOT and ovarian metastasis, with AUCs of 0.54 (95% CI, 0.45–0.64) and 0.66 (95% CI, 0.56–0.77), respectively. When including CA125 in the model, the performance in discriminating between stage II–IV OC and stage I OC and between stage II–IV OC ovarian metastasis was improved (AUC increased from 0.88 to 0.94, P = 0.01, and from 0.86 to 0.97, p = 0.01).
Conclusions
The IOTA ADNEX model has excellent performance in differentiating benign and malignant adnexal masses in the hands of nonexpert ultrasonographers with limited experience in China. In classifying different subtypes of ovarian cancers, the model has difficulty differentiating BOTs from stage I OC and BOTs from ovarian metastases.
Publisher
Springer Science and Business Media LLC
Subject
Obstetrics and Gynecology,Oncology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献