Author:
Liu Si,Tu Chang,Zhang Haobo,Huang Hanhui,Liu Yuanyuan,Wang Yi,Cheng Liming,Liu Bi-Feng,Ning Kang,Liu Xin
Abstract
Abstract
Background
Ovarian cancer (OC) is one of the most common gynecological tumors with high morbidity and mortality. Altered serum N-glycome has been observed in many diseases, while the association between serum protein N-glycosylation and OC progression remains unclear, particularly for the onset of carcinogenesis from benign neoplasms to cancer.
Methods
Herein, a mass spectrometry based high-throughput technique was applied to characterize serum N-glycome profile in individuals with healthy controls, benign neoplasms and different stages of OC. To elucidate the alterations of glycan features in OC progression, an orthogonal strategy with lectin-based ELISA was performed.
Results
It was observed that the initiation and development of OC was associated with increased high-mannosylationand agalactosylation, concurrently with decreased total sialylation of serum, each of which gained at least moderately accurate merits. The most important individual N-glycans in each glycan group was H7N2, H3N5 and H5N4S2F1, respectively. Notably, serum N-glycome could be used to accurately discriminate OC patients from benign cohorts, with a comparable or even higher diagnostic score compared to CA125 and HE4. Furthermore, bioinformatics analysis based discriminative model verified the diagnostic performance of serum N-glycome for OC in two independent sets.
Conclusions
These findings demonstrated the great potential of serum N-glycome for OC diagnosis and precancerous lesion prediction, paving a new way for OC screening and monitoring.
Funder
High-Level Talents Research Start-Up Project of Fujian Medical University
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献