Phenotyping COVID-19 respiratory failure in spontaneously breathing patients with AI on lung CT-scan

Author:

Rezoagli Emanuele,Xin Yi,Signori Davide,Sun Wenli,Gerard Sarah,Delucchi Kevin L.,Magliocca Aurora,Vitale Giovanni,Giacomini Matteo,Mussoni Linda,Montomoli Jonathan,Subert Matteo,Ponti Alessandra,Spadaro Savino,Poli Giancarla,Casola Francesco,Herrmann Jacob,Foti Giuseppe,Calfee Carolyn S.,Laffey John,Bellani Giacomo,Cereda Maurizio, ,Lorini Ferdinando Luca,Bonaffini Pietro,Cazzaniga Matteo,Ottaviani Irene,Tavola Mario,Borgo Asia,Ferraris Livio,Serra Filippo,Gatti Stefano,Ippolito Davide,Tamagnini Beatrice,Gatti Marino,Arlotti Massimo,Gamberini Emiliano,Cavagna Enrico,Galbiati Giuseppe,De Ponti Davide

Abstract

Abstract Background Automated analysis of lung computed tomography (CT) scans may help characterize subphenotypes of acute respiratory illness. We integrated lung CT features measured via deep learning with clinical and laboratory data in spontaneously breathing subjects to enhance the identification of COVID-19 subphenotypes. Methods This is a multicenter observational cohort study in spontaneously breathing patients with COVID-19 respiratory failure exposed to early lung CT within 7 days of admission. We explored lung CT images using deep learning approaches to quantitative and qualitative analyses; latent class analysis (LCA) by using clinical, laboratory and lung CT variables; regional differences between subphenotypes following 3D spatial trajectories. Results Complete datasets were available in 559 patients. LCA identified two subphenotypes (subphenotype 1 and 2). As compared with subphenotype 2 (n = 403), subphenotype 1 patients (n = 156) were older, had higher inflammatory biomarkers, and were more hypoxemic. Lungs in subphenotype 1 had a higher density gravitational gradient with a greater proportion of consolidated lungs as compared with subphenotype 2. In contrast, subphenotype 2 had a higher density submantellar–hilar gradient with a greater proportion of ground glass opacities as compared with subphenotype 1. Subphenotype 1 showed higher prevalence of comorbidities associated with endothelial dysfunction and higher 90-day mortality than subphenotype 2, even after adjustment for clinically meaningful variables. Conclusions Integrating lung-CT data in a LCA allowed us to identify two subphenotypes of COVID-19, with different clinical trajectories. These exploratory findings suggest a role of automated imaging characterization guided by machine learning in subphenotyping patients with respiratory failure. Trial registration: ClinicalTrials.gov Identifier: NCT04395482. Registration date: 19/05/2020.

Funder

Università degli Studi di Milano-Bicocca

National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3