Computational physiological models for individualised mechanical ventilation: a systematic literature review focussing on quality, availability, and clinical readiness

Author:

Warnaar R. S. P.,Mulder M. P.,Fresiello L.,Cornet A. D.,Heunks L. M. A.,Donker D. W.,Oppersma E.

Abstract

Abstract Background Individualised optimisation of mechanical ventilation (MV) remains cumbersome in modern intensive care medicine. Computerised, model-based support systems could help in tailoring MV settings to the complex interactions between MV and the individual patient's pathophysiology. Therefore, we critically appraised the current literature on computational physiological models (CPMs) for individualised MV in the ICU with a focus on quality, availability, and clinical readiness. Methods A systematic literature search was conducted on 13 February 2023 in MEDLINE ALL, Embase, Scopus and Web of Science to identify original research articles describing CPMs for individualised MV in the ICU. The modelled physiological phenomena, clinical applications, and level of readiness were extracted. The quality of model design reporting and validation was assessed based on American Society of Mechanical Engineers (ASME) standards. Results Out of 6,333 unique publications, 149 publications were included. CPMs emerged since the 1970s with increasing levels of readiness. A total of 131 articles (88%) modelled lung mechanics, mainly for lung-protective ventilation. Gas exchange (n = 38, 26%) and gas homeostasis (n = 36, 24%) models had mainly applications in controlling oxygenation and ventilation. Respiratory muscle function models for diaphragm-protective ventilation emerged recently (n = 3, 2%). Three randomised controlled trials were initiated, applying the Beacon and CURE Soft models for gas exchange and PEEP optimisation. Overall, model design and quality were reported unsatisfactory in 93% and 21% of the articles, respectively. Conclusion CPMs are advancing towards clinical application as an explainable tool to optimise individualised MV. To promote clinical application, dedicated standards for quality assessment and model reporting are essential. Trial registration number PROSPERO—CRD42022301715. Registered 05 February, 2022.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3