RETRACTED ARTICLE: Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line

Author:

Akbarzadeh Abolfazl,Samiei Mohammad,Joo Sang Woo,Anzaby Maryam,Hanifehpour Younes,Nasrabadi Hamid Tayefi,Davaran Soodabeh

Abstract

Abstract Background The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin. Method At first approach silane–grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX–loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox–loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM. Results The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm–MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx–loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible. Conclusion IC50 of DOx–loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Reference42 articles.

1. Akbarzadeh A, Asgari D, Zarghami N, Mohammad R, Davaran S: Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible co-polymers. Int J Nanomedicine. 2012, 7: 511-526.

2. Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Samiei M, Davaran S: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnology, Science and Applications. 2012, 5: 13-25.

3. Akbarzadeh A, Samiei M, Davaran S: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012, 7: 144-10.1186/1556-276X-7-144.

4. Shikata F, Tokumitso H, Ichikava H: In vitro cellular accumulation of gadolinium incorporated into chitosane nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002, 53: 57-63. 10.1016/S0939-6411(01)00198-9.

5. Sledge G, Miller K: Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer. 2003, 39: 1668-1675. 10.1016/S0959-8049(03)00273-9.

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3