Author:
Akbarzadeh Abolfazl,Samiei Mohammad,Joo Sang Woo,Anzaby Maryam,Hanifehpour Younes,Nasrabadi Hamid Tayefi,Davaran Soodabeh
Abstract
Abstract
Background
The aim of present study was to develop the novel methods for chemical and physical modification of superparamagnetic iron oxide nanoparticles (SPIONs) with polymers via covalent bonding entrapment. These modified SPIONs were used for encapsulation of anticancer drug doxorubicin.
Method
At first approach silane–grafted magnetic nanoparticles was prepared and used as a template for polymerization of the N-isopropylacrylamide (NIPAAm) and methacrylic acid (MAA) via radical polymerization. This temperature/pH-sensitive copolymer was used for preparation of DOX–loaded magnetic nanocomposites. At second approach Vinyltriethoxysilane-grafted magnetic nanoparticles were used as a template to polymerize PNIPAAm-MAA in 1, 4 dioxan and methylene-bis-acrylamide (BIS) was used as a cross-linking agent. Chemical composition and magnetic properties of Dox–loaded magnetic hydrogel nanocomposites were analyzed by FT-IR, XRD, and VSM.
Results
The results demonstrate the feasibility of drug encapsulation of the magnetic nanoparticles with NIPAAm–MAA copolymer via covalent bonding. The key factors for the successful prepardtion of magnetic nanocomposites were the structure of copolymer (linear or cross-linked), concentration of copolymer and concentration of drug. The influence of pH and temperature on the release profile of doxorubicin was examined. The in vitro cytotoxicity test (MTT assay) of both magnetic DOx–loaded nanoparticles was examined. The in vitro tests showed that these systems are no toxicity and are biocompatible.
Conclusion
IC50 of DOx–loaded Fe3O4 nanoparticles on A549 lung cancer cell line showed that systems could be useful in treatment of lung cancer.
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference42 articles.
1. Akbarzadeh A, Asgari D, Zarghami N, Mohammad R, Davaran S: Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible co-polymers. Int J Nanomedicine. 2012, 7: 511-526.
2. Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Samiei M, Davaran S: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnology, Science and Applications. 2012, 5: 13-25.
3. Akbarzadeh A, Samiei M, Davaran S: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012, 7: 144-10.1186/1556-276X-7-144.
4. Shikata F, Tokumitso H, Ichikava H: In vitro cellular accumulation of gadolinium incorporated into chitosane nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm. 2002, 53: 57-63. 10.1016/S0939-6411(01)00198-9.
5. Sledge G, Miller K: Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer. 2003, 39: 1668-1675. 10.1016/S0959-8049(03)00273-9.
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献