Development and validation of a nomogram for predicting metabolic-associated fatty liver disease in the Chinese physical examination population

Author:

Zhou Bingqian,Gong Ni,Huang Xinjuan,Zhu Jingchi,Qin Chunxiang,He Qingnan

Abstract

Abstract Aim We aim to develop and validate a nomogram including readily available clinical and laboratory indicators to predict the risk of metabolic-associated fatty liver disease (MAFLD) in the Chinese physical examination population. Methods The annual physical examination data of Chinese adults from 2016 to 2020 were retrospectively analyzed. We extracted the clinical data of 138 664 subjects and randomized participants to the development and validation groups (7:3). Significant predictors associated with MAFLD were identified by using univariate and random forest analyses, and a nomogram was constructed to predict the risk of MAFLD based on a Lasso logistic model. Receiver operating characteristic curve analysis, calibration curves, and decision curve analysis were used to verify the discrimination, calibration, and clinical practicability of the nomogram, respectively. Results Ten variables were selected to establish the nomogram for predicting MAFLD risk: sex, age, waist circumference (WC), uric acid (UA), body mass index (BMI), waist-to-hip ratio (WHR), systolic blood pressure (SBP), fasting plasma glucose (FPG), triglycerides (TG), and alanine aminotransferase (ALT). The nomogram built on the nonoverfitting multivariable model showed good prediction of discrimination (AUC 0.914, 95% CI: 0.911–0.917), calibration, and clinical utility. Conclusions This nomogram can be used as a quick screening tool to assess MAFLD risk and identify individuals at high risk of MAFLD, thus contributing to the improved management of MAFLD.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Key Research and Development Program of Hunan Province of China

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3