Abstract
AbstractThe aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations:
$$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\mathbb{R}} ^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)e^{u}, \\ &\quad z=(x,y) \in R^{N}=R^{N_{1}}\times R^{N_{2}} \end{aligned} \end{aligned}$$
−
M
(
∫
R
N
ω
(
z
)
|
∇
G
u
|
2
d
z
)
div
G
(
ω
(
z
)
∇
G
u
)
=
f
(
z
)
e
u
,
z
=
(
x
,
y
)
∈
R
N
=
R
N
1
×
R
N
2
and
$$\begin{aligned} \begin{aligned}[b] & M \biggl( \int _{\mathbb{R}^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)u^{-q}, \\ &\quad z=(x,y) \in {\mathbb{R}} ^{N}={\mathbb{R}} ^{N_{1}}\times {\mathbb{R}} ^{N_{2}}, \end{aligned} \end{aligned}$$
M
(
∫
R
N
ω
(
z
)
|
∇
G
u
|
2
d
z
)
div
G
(
ω
(
z
)
∇
G
u
)
=
f
(
z
)
u
−
q
,
z
=
(
x
,
y
)
∈
R
N
=
R
N
1
×
R
N
2
,
where $M(t)=a+bt^{k}$
M
(
t
)
=
a
+
b
t
k
, $t\geq 0$
t
≥
0
, with $a>0$
a
>
0
, $b, k\geq 0$
b
,
k
≥
0
, $k=0$
k
=
0
if and only if $b=0$
b
=
0
. $q>0$
q
>
0
and $\omega (z), f(z)\in L^{1}_{\mathrm{loc}}({\mathbb{R}} ^{N})$
ω
(
z
)
,
f
(
z
)
∈
L
loc
1
(
R
N
)
are nonnegative functions satisfying $\omega (z)\leq C_{1}\|z \|_{G}^{\theta }$
ω
(
z
)
≤
C
1
∥
z
∥
G
θ
and $f(z)\geq C_{2}\|z\|_{G}^{d}$
f
(
z
)
≥
C
2
∥
z
∥
G
d
as $\|z\|_{G} \geq R_{0}$
∥
z
∥
G
≥
R
0
with $d>\theta -2$
d
>
θ
−
2
, $R_{0}$
R
0
, $C_{i}$
C
i
($i=1,2$
i
=
1
,
2
) are some positive constants, here $\alpha \geq 0$
α
≥
0
and $\|z\|_{G}=(|x|^{2(1+ \alpha )}+|y|^{2})^{\frac{1}{2(1+\alpha )}}$
∥
z
∥
G
=
(
|
x
|
2
(
1
+
α
)
+
|
y
|
2
)
1
2
(
1
+
α
)
is the norm corresponding to the Grushin distance. $N_{\alpha }=N_{1}+(1+\alpha )N_{2}$
N
α
=
N
1
+
(
1
+
α
)
N
2
is the homogeneous dimension of ${\mathbb{R}} ^{N}$
R
N
. $\operatorname{div}_{G}$
div
G
(resp., $\nabla _{G}$
∇
G
) is Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ, d, and $N_{\alpha }$
N
α
, the nonexistence of stable weak solutions to equations (0.1) and (0.2) is investigated.
Funder
National Natural Science Foundation of China
Jiangsu Province Natural Science Research Projects in Colleges and Universities
Natural Science Foundation of Shandong Province
Postdoctoral Research Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献