Regularity of stable solutions to semilinear elliptic equations on Riemannian models

Author:

Castorina Daniele1,Sanchón Manel2

Affiliation:

1. 1Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy

2. 2Centre de Recerca Matemàtica and Universitat Autònoma de Barcelona, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain

Abstract

AbstractWe consider the reaction-diffusion problem -Δgu = f(u) in ℬR with zero Dirichlet boundary condition, posed in a geodesic ball ℬR with radius R of a Riemannian model (M,g). This class of Riemannian manifolds includes the classical space forms, i.e., the Euclidean, elliptic, and hyperbolic spaces. For the class of semistable solutions we prove radial symmetry and monotonicity. Furthermore, we establish L, Lp, and W1,p estimates which are optimal and do not depend on the nonlinearity f. As an application, under standard assumptions on the nonlinearity λf(u), we prove that the corresponding extremal solution u* is bounded whenever n ≤ 9. To establish the optimality of our regularity results we find the extremal solution for some exponential and power nonlinearities using an improved weighted Hardy inequality.

Funder

MINECO

GENCAT

PRIN09

ERC

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liouville-type theorem for Kirchhoff equations involving Grushin operators;Boundary Value Problems;2020-01-23

2. Regularity of stable solutions to quasilinear elliptic equations on Riemannian models;Annales Academiae Scientiarum Fennicae Mathematica;2019-06

3. An optimal improvement for the Hardy inequality on the hyperbolic space and related manifolds;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2019-02-01

4. A note on existence of patterns on surfaces of revolution with nonlinear flux on the boundary;Electronic Journal of Qualitative Theory of Differential Equations;2019

5. Partial regularity up to the boundary for solutions of subquadratic elliptic systems;Advances in Nonlinear Analysis;2018-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3