Author:
Xiu Zonghu,Zhao Jing,Chen Jianyi
Abstract
AbstractWe consider the existence of multiple solutions of the following singular nonlocal elliptic problem: $$\begin{aligned} \textstyle\begin{cases} -M(\int _{\mathbb{R} ^{N}}{ \vert x \vert ^{-ap} \vert \nabla u \vert ^{p}})\operatorname{div}( \vert x \vert ^{-ap} \vert \nabla u \vert ^{p-2}\nabla u)= h(x) \vert u \vert ^{r-2}u+H(x) \vert u \vert ^{q-2}u, \\ u(x)\rightarrow 0 \quad \text{as } \vert x \vert \rightarrow \infty , \end{cases}\displaystyle \end{aligned}$$ {−M(∫RN|x|−ap|∇u|p)div(|x|−ap|∇u|p−2∇u)=h(x)|u|r−2u+H(x)|u|q−2u,u(x)→0as |x|→∞, where $x\in \mathbb{R} ^{N}$x∈RN, and $M(t)=\alpha +\beta t$M(t)=α+βt. By the variational method we prove that the problem has infinitely many solutions when some conditions are fulfilled.
Funder
National Natural Science Foundation of China
Qingdao Agricultural University
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference27 articles.
1. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
2. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Proceedings of International Symposium on Continuum Mechanics and Partial Differential Equations, vol. 30, pp. 284–346 (1978)
3. Liu, J., Liao, J.F., Pan, H.L.: Ground state solution on a non-autonomous Kirchhoff type equation. Comput. Math. Appl. 78, 878–888 (2019)
4. Anello, A.: A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem. J. Math. Anal. Appl. 373, 248–251 (2011)
5. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献