Affiliation:
1. Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar , Tunis , Tunisia
2. Faculty of Sciences of Tunis, University of Tunis El Manar , Tunis , Tunisia
Abstract
Abstract
In this work, we study the weighted Kirchhoff problem
−
g
∫
B
σ
(
x
)
∣
∇
u
∣
N
d
x
div
(
σ
(
x
)
∣
∇
u
∣
N
−
2
∇
u
)
=
f
(
x
,
u
)
in
B
,
u
>
0
in
B
,
u
=
0
on
∂
B
,
\left\{\begin{array}{ll}-g\left(\mathop{\displaystyle \int }\limits_{B}\sigma \left(x)| \nabla u\hspace{-0.25em}{| }^{N}{\rm{d}}x\right){\rm{div}}\left(\sigma \left(x)| \nabla u\hspace{-0.25em}{| }^{N-2}\nabla u)=f\left(x,u)& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}B,\\ u\gt 0& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}B,\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial B,\end{array}\right.
where
B
B
is the unit ball of
R
N
{{\mathbb{R}}}^{N}
,
σ
(
x
)
=
log
e
∣
x
∣
N
−
1
\sigma \left(x)={\left(\log \left(\frac{e}{| x| }\right)\right)}^{N-1}
, the singular logarithm weight in the Trudinger-Moser embedding, and
g
g
is a continuous positive function on
R
+
{{\mathbb{R}}}^{+}
. The nonlinearity is critical or subcritical growth in view of Trudinger-Moser inequalities. We first obtain the existence of a solution in the subcritical exponential growth case with positive energy by using minimax techniques combined with the Trudinger-Moser inequality. In the critical case, the associated energy does not satisfy the condition of compactness. We provide a new condition for growth, and we stress its importance to check the compactness level.
Reference26 articles.
1. J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud. 30 (1978), 284–346.
2. C. O. Alves, F. J. S. A. Corrêa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85–93.
3. C. O. Alves and F. J. S. A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43–56.
4. Z. Xiu, J. Zhao, and J. Chen, Existence of infinitely many solutions for a p-Kirchhoff problem in RN, Bound. Value Probl. 2020 (2020), 106, https://doi.org/10.1186/s13661-020-01403-7.
5. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/ 71), 1077–1092.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献