Author:
Leuyacc Yony Raúl Santaria
Abstract
AbstractThis paper studies the existence of nontrivial solutions to the following class of Schrödinger equations: $$ \textstyle\begin{cases} -\operatorname{div}(w(x)\nabla u) = f(x,u),&\ x \in B_{1}(0), \\ u = 0,&\ x \in \partial B_{1}(0), \end{cases} $$
{
−
div
(
w
(
x
)
∇
u
)
=
f
(
x
,
u
)
,
x
∈
B
1
(
0
)
,
u
=
0
,
x
∈
∂
B
1
(
0
)
,
where $w(x)= (\ln (1/|x|) )^{\beta}$
w
(
x
)
=
(
ln
(
1
/
|
x
|
)
)
β
for some $\beta \in [0,1)$
β
∈
[
0
,
1
)
, the nonlinearity $f(x,s)$
f
(
x
,
s
)
behaves like ${\exp} (|s|^{\frac{2}{1-\beta}+h(|x|)} )$
exp
(
|
s
|
2
1
−
β
+
h
(
|
x
|
)
)
, and h is a continuous radial function such that $h(r)$
h
(
r
)
can be unbounded as r tends to 1. Our approach is based on a new Trudinger–Moser-type inequality for weighted Sobolev spaces and variational methods.
Funder
Prociencia
Universidad Nacional Mayor de San Marcos
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory,Analysis
Reference39 articles.
1. Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 3, 393–413 (1990)
2. Adimurthi, Yadava, S.L.: Multiplicity results for semilinear elliptic equations in a bounded domain of "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" involving critical exponent. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4, 481–504 (1990)
3. Adimurthi, S.K.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13, 585–603 (2007). https://doi.org/10.1007/s00030-006-4025-9
4. Albuquerque, F.S.B., Alves, C.O., Medeiros, E.S.: Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" . J. Math. Anal. Appl. 409, 1021–1031 (2014). https://doi.org/10.1016/j.jmaa.2013.07.005
5. Alvino, A., Ferone, V., Trombetti, G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5, 273–299 (1996). https://doi.org/10.1007/BF00282364
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献