Author:
Leuyacc Yony Raúl Santaria
Abstract
<abstract><p>In this paper, we deal with the existence of nontrivial solutions to the following class of strongly coupled Hamiltonian systems:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \quad \left\{ \begin{array}{rclll} -{\rm div} \big(w(x)\nabla u\big) \ = \ g(x,v),&\ & x \in B_1(0), \\[5pt] - {\rm div}\big(w(x) \nabla v\big)\ = \ f(x,u),&\ & x \in B_1(0), \\[5pt] u = v = 0&\ & x \in \partial B_1(0), \end{array} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ w(x) = \big(\log 1/|x|\big)^{\gamma} $, $ 0\leq\gamma < 1 $, and the nonlinearities $ f $ and $ g $ possess exponential growth ranges above the exponential critical hyperbola. Our approach is based on Trudinger-Moser type inequalities for weighted Sobolev spaces and variational methods.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference44 articles.
1. Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian, Ann. Scuola Norm.-Sci., 3 (1990), 393–413.
2. Adimurthi, S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb{R}^2$ involving critical exponent, Ann. Scuola Norm.-Sci., 4 (1990), 481–504.
3. F. S. B. Albuquerque, J. M. do Ó, E. S. Medeiros, On a class of Hamiltonian systems involving unbounded or decaying potential in dimension two, Math. Nachr., 289 (2016), 1568–1584. https://doi.org/10.1002/mana.201400203
4. A. Alvino, V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364
5. T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Am. Math. Soc., 123 (1995), 3555–3561.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献