Chitinase 3 like 1 suppresses the stability and activity of p53 to promote lung tumorigenesis

Author:

Park Kyung-Ran,Yun Hyung-MunORCID,Yoo Kyeongwon,Ham Young Wan,Han Sang Bae,Hong Jin Tae

Abstract

Abstract Background Chitinase 3 like 1 protein (Chi3L1) is expressed in several cancers, and a few evidences suggest that the secreted Chi3L1 contributes to tumor development. However, the molecular mechanisms of intracellular Chi3L1 are unknown in the lung tumor development. Methods: In the present study, we generated Chi3L1 knockout mice (Chi3L1KO(−/−)) using CRISPR/Cas9 system to investigate the role of Chi3L1 on lung tumorigenesis. Results We established lung metastasis induced by i.v. injections of B16F10 in Chi3L1KO(−/−). The lung tumor nodules were significantly reduced in Chi3L1KO(−/−) and protein levels of p53, p21, BAX, and cleaved-caspase 3 were significantly increased in Chi3L1KO(−/−), while protein levels of cyclin E1, CDK2, and phsphorylation of STAT3 were decreased in Chi3L1KO(−/−). Allograft mice inoculated with B16F10 also suppressed tumor growth and increased p53 and its target proteins including p21 and BAX. In addition, knockdown of Chi3L1 in lung cancer cells inhibited lung cancer cell growth and upregulated p53 expression with p21 and BAX, and a decrease in phosphorylation of STAT3. Furthermore, we found that intracellular Chi3L1 physically interacted and colocalized with p53 to inhibit its protein stability and transcriptional activity for target genes related with cell cycle arrest and apoptosis. In lung tumor patient, we clinically found that Chi3L1 expression was upregulated with a decrease in p53 expression, as well as we validated that intracellular Chi3L1 was colocalized, reversely expressed, and physically interacted with p53, which results in suppression of the expression and function of p53 in lung tumor patient. Conclusions Our studies suggest that intracellular Chi3L1 plays a critical role in the lung tumorigenesis by regulating its novel target protein, p53 in both an in vitro and in vivo system.

Funder

National Research Foundation of Korea

Kyung Hee University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3