Lower SLC7A2 expression is associated with enhanced multidrug resistance, less immune infiltrates and worse prognosis of NSCLC

Author:

Jiang Shanshan,Zou Junrong,Dong Jianyu,Shi Huimian,Chen Jie,Li Yan,Duan Xianglong,Li Wensheng

Abstract

Abstract Background Solute carrier family 7 member 2 (SLC7A2), a cationic amino acid transporter, is lowly expressed in ovarian and hepatocellular cancers, which is associated with their worse prognosis. However, its roles in the prognosis, drug resistance and immune infiltration in non-small-cell lung cancer (NSCLC) are unclear. Methods We chose SLC7A2 from RNA-Seq of paclitaxel/cisplatin-resistant A549 cells, then bioinformatics, cell lines construction, RT-qPCR, and CCK8 were performed to investigate SLC7A2 role. Result We analyzed the 223 differentially expressed genes (DEGs) from RNA-Seq of paclitaxel/cisplatin-resistant A549 cells and found that SLC7A2 expression was down-regulated in NSCLC. Lower SLC7A2 expression was associated with worse recurrence-free survival (RFS) in NSCLC. SLC7A2 silencing enhanced the proliferation of NSCLC cells and their insensitivity to paclitaxel, cisplatin, and gemcitabine in vitro. Activation of AMPK has up-regulated SLC7A2 expression and enhanced the sensitivity of NSCLC cells to anti-tumor drugs, which could be attributed to E2F1’s regulation. In addition, the levels of SLC7A2 expression were correlated to the numbers of infiltrated neutrophils, macrophages, dendritic cells and their marker genes, like CD86, HLA-DPA1 and ITGAM. Conclusions SLC7A2 may act as a tumor suppressor to modulate drug sensitivity, immune infiltration and survival in NSCLC.

Funder

Natural Science Foundation of Shaanxi Province

Foundation of Shaanxi Provincial People’s Hospital

the Medjaden Academy; Research Foundation for Young Scientists

Medjaden Academy; Research Foundation for Young Scientists

Innovation Capability Support Program of Shaanxi

Key Research and Development Program of Shaanxi

the Innovation team of Department of Science and Technology of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3