The macrophage-associated prognostic gene ANXA5 promotes immunotherapy resistance in gastric cancer through angiogenesis

Author:

Hong Zhijun,Wen Peizhen,Wang Kang,Wei Xujin,Xie Wen,Rao Shihao,Chen Xin,Hou Jingjing,Zhuo Huiqin

Abstract

AbstractGastric cancer (GC) remains a predominant form of malignant tumor globally, necessitating innovative non-surgical therapeutic approaches. This investigation aimed to delineate the expression landscape of macrophage-associated genes in GC and to evaluate their prognostic significance and influence on immunotherapeutic responsiveness. Utilizing the CellMarker2.0 database, we identified 69 immune cell markers with prognostic relevance in GC, including 12 macrophage-specific genes. A Weighted Gene Co-Expression Network Analysis (WGCNA) isolated 3,181 genes correlated with these macrophage markers. The Cancer Genome Atlas (TCGA-STAD) dataset was employed as the training set, while data from the GSE62254 served as the validation cohort. 13 genes were shortlisted through LASSO-Cox regression to formulate a prognostic model. Multivariable Cox regression substantiated that the calculated risk score serves as an imperative independent predictor of overall survival (OS). Distinct macrophage infiltration profiles, pathway associations, treatment susceptibilities, and drug sensitivities were observed between high- and low-risk groups. The preliminary validation of ANXA5 in predicting the survival rates of GC patients at 1 year, 3 years, and 5 years, as well as its expression levels were higher and role in promoting tumor angiogenesis in GC through immunohistochemistry and angiogenesis experiments. In summary, macrophage-related genes were potentially a novel crosstalk mechanism between macrophages and endothelial cells in the tumor microenvironment, and the interplay between inflammation and angiogenesis might have also offered new therapeutic targets, providing a new avenue for personalized treatment interventions.

Funder

the Natural Science Foundation of Fujian Province

the Medical and Health Sciences Foundation of Xiamen

the National Natural Scientific Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3