The Janus-faced role of TRPM2-S in retroperitoneal liposarcoma via increasing ROS levels

Author:

Li Xiangji,Bu Fanqin,Ma Shixiang,Cananzi Ferdinando,Zhao Yu,Xiao Mengmeng,Min Li,Luo Chenghua

Abstract

Abstract Background Retroperitoneal liposarcoma (RPLS) is a specific soft tissue sarcoma with a high recurrence rate. The short isoform of transient receptor potential cation channel subfamily M member 2 (TRPM2-S) plays an important role in the regulation of reactive oxygen species (ROS). However, the association between TRPM2-S and RPLS and its underlying mechanisms remains unclear. Methods The expression of both TRPM2-S and TRPM2-L in RPLS tissues was verified by kimmunohistochemistry (IHC). The regulation on Ca2+ influx by TRPM2-S was evaluated by Fluo-4 AM staining. The effect of TRPM2-S on cell proliferation and apoptosis was tested by 5-Ethynyl-2′-deoxyuridine (EdU) staining and Flow cytometry respectively. The level of cellular ROS was assessed by the DCFH-DA probe. Different concentrations of H2O2 were used to provide oxidative stress on RPLS cells. The underlying mechanisms were further explored by Western blotting. Results The IHC assays showed that TRPM2-S, but not TRPM2-L, was prognostic in RPLS. Low TRPM2-S level was associated with poor disease-free survival (DFS). Calcium influx signal intensity was significantly decreased under TRPM2-S overexpression, which resulted in a decrease in the levels of FOXO3a and PTEN. Correspondingly, the levels of pERK, pAKT, pP65, pGSK-3β, Bcl-2, and β-catenin were upregulated, and cellular ROS was gently increased under TRPM2-S overexpression. Moreover, TRPM2-S slightly promoted cell proliferation and inhibited apoptosis of RPLS cell lines under normoxia, but largely increased apoptosis rates under oxidative stress. The cleaved caspase3 was significantly upregulated by TRPM2-S overexpression under oxidative stress. N-Acetyl-l-cysteine (NAC), a small molecule antioxidant, could largely rescue RPLS cells from the apoptosis induced by H2O2. Conclusion TRPM2-S exerts Janus-faced effects in RPLS by increasing the ROS levels via inhibition on FOXO3a, which promotes cell proliferation under normoxia but induces apoptosis under oxidative stress.

Funder

Peking University International Hospital Research Grant

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3