Molecular Feature-Based Classification of Retroperitoneal Liposarcoma: A Prospective Cohort Study

Author:

Xiao Mengmeng,Li Xiangji,Bu Fanqin,Ma Shixiang,Yang Xiaohan,Chen Jun,Zhao Yu,Cananzi Ferdinando,Luo ChenghuaORCID,Min LiORCID

Abstract

ABSTRACTBackgroundRetroperitoneal liposarcoma (RPLS) is a critical malignant disease with various clinical outcomes. However, the molecular heterogeneity of RPLS was poorly elucidated, and few biomarkers were proposed to monitor its progression.MethodsRNA sequencing was performed on a training cohort of 88 RPLS patients to identify dysregulated genes and pathways using clusterprofiler. The GSVA algorithm was utilized to assess signaling pathways levels in each sample, and unsupervised clustering was employed to distinguish RPLS subtypes. Differentially expressed genes (DEGs) between RPLS subtypes were identified to construct a simplified dichotomous clustering via nonnegative matrix factorization. The feasibility of this classification was validated in a separate validation cohort (n=241) using immunohistochemistry (IHC) from the Retroperitoneal SArcoma Registry (RESAR). The study is registered withClinicalTrials.govunder numberNCT03838718.ResultsCell cycle, DNA damage & repair, and Metabolism were identified as the most aberrant biological processes in RPLS, enabling the division of RPLS patients into two distinct subtypes with unique molecular signatures, tumor microenvironment, clinical features and outcomes (overall survival, OS and disease-free survival, DFS). A simplified RPLS classification based on representative biomarkers (LEP and PTTG1) demonstrated high accuracy (AUC>0.99), with patients classified as LEP+ and PTTG1-showing lower aggressive pathological composition ratio and fewer surgery times, along with better OS (HR=0.41,P<0.001) and DFS (HR=0.60,P=0.005).ConclusionsOur study provided an ever-largest gene expression landscape of RPLS and established an IHC-based molecular classification that was clinically relevant and cost-effective for guiding treatment decisions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3