Prospective prediction of PTSD diagnosis in a nationally representative sample using machine learning

Author:

Worthington Michelle A.ORCID,Mandavia Amar,Richardson-Vejlgaard Randall

Abstract

Abstract Background Recent research has identified a number of pre-traumatic, peri-traumatic and post-traumatic psychological and ecological factors that put an individual at increased risk for developing PTSD following a life-threatening event. While these factors have been found to be associated with PTSD in univariate analyses, the complex interactions of these risk factors and how they contribute to individual trajectories of the illness are not yet well understood. In this study, we examine the impact of prior trauma, psychopathology, sociodemographic characteristics, community and environmental information, on PTSD onset in a nationally representative sample of adults in the United States, using machine learning methods to establish the relative contributions of each variable. Methods Individual risk factors identified in Waves 1 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) were combined with community-level data for the years concurrent to the NESARC Wave 1 (n = 43,093) and 2 (n = 34,653) surveys. Machine learning feature selection and classification analyses were used at the national level to create models using individual- and community-level variables that would best predict the new onset of PTSD at Wave 2. Results Our classification algorithms yielded 89.7 to 95.6% accuracy for predicting new onset of PTSD at Wave 2. A prior diagnosis of DSM-IV-TR Borderline Personality Disorder, Major Depressive Disorder or Anxiety Disorder conferred the greatest relative influence in new diagnosis of PTSD. Distal risk factors such as prior psychiatric diagnosis accounted for significantly greater relative risk than proximal factors (such as adverse event exposure). Conclusions Our findings show that a machine learning classification approach can successfully integrate large numbers of known risk factors for PTSD into stronger models that account for high-dimensional interactions and collinearity between variables. We discuss the implications of these findings as pertaining to the targeted mobilization emergency mental health resources. These findings also inform the creation of a more comprehensive risk assessment profile to the likelihood of developing PTSD following an extremely adverse event.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3