Using deep learning to classify pediatric posttraumatic stress disorder at the individual level

Author:

Yang Jing,Lei Du,Qin Kun,Pinaya Walter H. L.,Suo Xueling,Li Wenbin,Li Lingjiang,Kemp Graham J.,Gong QiyongORCID

Abstract

Abstract Background Children exposed to natural disasters are vulnerable to developing posttraumatic stress disorder (PTSD). Previous studies using resting-state functional neuroimaging have revealed alterations in graph-based brain topological network metrics in pediatric PTSD patients relative to healthy controls (HC). Here we aimed to apply deep learning (DL) models to neuroimaging markers of classification which may be of assistance in diagnosis of pediatric PTSD. Methods We studied 33 pediatric PTSD and 53 matched HC. Functional connectivity between 90 brain regions from the automated anatomical labeling atlas was established using partial correlation coefficients, and the whole-brain functional connectome was constructed by applying a threshold to the resultant 90 * 90 partial correlation matrix. Graph theory analysis was used to examine the topological properties of the functional connectome. A DL algorithm then used this measure to classify pediatric PTSD vs HC. Results Graphic topological measures using DL provide a potentially clinically useful classifier for differentiating pediatric PTSD and HC (overall accuracy 71.2%). Frontoparietal areas (central executive network), cingulate cortex, and amygdala contributed the most to the DL model’s performance. Conclusions Graphic topological measures based on fMRI data could contribute to imaging models of clinical utility in distinguishing pediatric PTSD from HC. DL model may be a useful tool in the identification of brain mechanisms PTSD participants.

Funder

National Natural Science Foundation of China

Program for Changjiang Scholars and Innovative Research Team in University

Wellcome Innovations

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3