A novel model to predict mental distress among medical graduate students in China

Author:

Guo Fei,Yi Min,Sun Li,Luo Ting,Han Ruili,Zheng Lanlan,Jin Shengyang,Wang Jun,Lei Mingxing,Gao Changjun

Abstract

Abstract Background Poor mental health was reported among medical graduate students in some studies. Identification of risk factors for predicting the mental health is capable of reducing psychological distress among medical graduate students. Therefore, the aim of the study was to identify potential risk factors relating to mental health and further create a novel prediction model to calculate the risk of mental distress among medical graduate students. Methods This study collected and analyzed 1079 medical graduate students via an online questionnaire. Included participants were randomly classified into a training group and a validation group. A model was developed in the training group and validation of the model was performed in the validation group. The predictive performance of the model was assessed using the discrimination and calibration. Results One thousand and fifteen participants were enrolled and then randomly divided into the training group (n = 508) and the validation group (n = 507). The prevalence of severe mental distress was 14.96% in the training group, and 16.77% in the validation group. The model was developed using the six variables, including the year of study, type of student, daily research time, monthly income, scientific learning style, and feeling of time stress. The area under the receiver operating characteristic curve (AUROC) and calibration slope for the model were 0.70 and 0.90 (95% CI: 0.65 ~ 1.15) in the training group, respectively, and 0.66 and 0.80 (95% CI, 0.51 ~ 1.09) in the validation group, respectively. Conclusions The study identified six risk factors for predicting anxiety and depression and successfully created a prediction model. The model may be a useful tool that can identify the mental status among medical graduate students. Trial registration No.ChiCTR2000039574, prospectively registered on 1 November 2020.

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3