Author:
Zhang Ke,Tian Yang,Liu Chenglong,Xue Wentong
Abstract
Abstract
Background
The properties of potato flour will be different due to different processing parameters, which will affect their processing adaptability. In this paper, different potato flour were investigated to determine viscoelastic properties and structural transformation using thermodynamics, rheological and spectrum methods. Potato flour was prepared by drying at different temperature after soaking in citric acid, microwave and steamed respectively. The treated samples were dried by hot air and then compared with the freeze-dried potato flour. Four kinds of potato flour showed different properties after shearing at high temperature.
Results
Differential scanning calorimetry (DSC) results revealed that potato flour with low gelatinization had lower enthalpy and faster melting process than freeze-dried potato powder. RVA and texture results showed that potato flour with low gelatinization had the best retrogradation property and the stable gel. X-ray diffraction (XRD) patterns revealed that the crystalline properties of different potato flour after shearing at high temperature were the same. In addition, low gelatinization potato flour presented a crystalline structure or strong internal order. Fourier-transform infrared spectroscopy (FTIR) spectra showed that high temperature and shearing mainly caused δ-deformation of O–H in intact potato granules.
Conclusion
Freeze drying and hot air drying at low temperature made potato flour had better gel stability than microwave and steamed treatment. Hot air drying at low temperature made potato flour had good retrogradation after hot shearing, which was more conducive to the formation of hot-processed products.
Funder
The National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献