In silico insights into the design of novel NR2B-selective NMDA receptor antagonists: QSAR modeling, ADME-toxicity predictions, molecular docking, and molecular dynamics investigations

Author:

El fadili Mohamed,Er-rajy Mohammed,Mujwar Somdutt,Ajala Abduljelil,Bouzammit Rachid,Kara Mohammed,Abuelizz Hatem A.,Er-rahmani Sara,Elhallaoui Menana

Abstract

AbstractBased on a structural family of thirty-two NR2B-selective N-Methyl-D-Aspartate receptor (NMDAR) antagonists, two phenylpiperazine derivatives labeled C37 and C39 were conceived thanks to molecular modeling techniques, as novel NMDAR inhibitors exhibiting the highest analgesic activities (of pIC50 order) against neuropathic pain, with excellent ADME-toxicity profiles, and good levels of molecular stability towards the targeted protein of NMDA receptor. Initially, the quantitative structure-activity relationships (QSARs) models were developed using multiple linear regression (MLR), partial least square regression (PLSR), multiple non-linear regression (MNLR), and artificial neural network (ANN) techniques, revealing that analgesic activity was strongly correlated with dipole moment, octanol/water partition coefficient, Oxygen mass percentage, electronegativity, and energy of the lowest unoccupied molecular orbital, whose the correlation coefficients of generated models were: 0.860, 0.758, 0.885 and 0.977, respectively. The predictive capacity of each model was evaluated by an external validation with correlation coefficients of 0.703, 0.851, 0.778, and 0.981 respectively, followed by a cross-validation technique with the leave-one-out procedure (CVLOO) with Q2cv of 0.785, more than Y-randomization test, and applicability domain (AD), in addition to Fisher’s and Student’s statistical tests. Thereafter, ten novel molecules were designed based on MLR QSAR model, then predicted with their ADME-Toxicity profiles and subsequently examined for their similarity to the drug candidates. Finally, two of the most active compounds (C37 and C39) were chosen for molecular docking and molecular dynamics (MD) investigations during 100 ns of MD simulation time in complex with the targeted protein of NMDA receptor (5EWJ.pdb).

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Yamamoto H, Hagino Y, Kasai S, Ikeda K. Specific roles of NMDA receptor subunits in Mental disorders. CMM. 2015;15:193–205. https://doi.org/10.2174/1566524015666150330142807.

2. Santora VJ, Almos TA, Barido R, Basinger J, Bellows CL, Bookser BC, Breitenbucher JG, Broadbent NJ, Cabebe C, Chai C-K, Chen M, Chow S, Chung DM, Crickard L, Danks AM, Freestone GC, Gitnick D, Gupta V, Hoffmaster C, Hudson AR, Kaplan AP, Kennedy MR, Lee D, Limberis J, Ly K, Mak CC, Masatsugu B, Morse AC, Na J, Neul D, Nikpur J, Peters M, Petroski RE, Renick J, Sebring K, Sevidal S, Tabatabaei A, Wen J, Yan Y, Yoder ZW. Zook, Design and Synthesis of Novel and selective Glycine Transporter-1 (GlyT1) inhibitors with Memory Enhancing properties. J Med Chem. 2018;61:6018–33. https://doi.org/10.1021/acs.jmedchem.8b00372.

3. Hudson AR, Santora VJ, Petroski RE, Almos TA, Anderson G, Barido R, Basinger J, Bellows CL, Bookser BC, Broadbent NJ, Cabebe C, Chai C-K, Chen M, Chow S, Chung DM, Heger L, Danks AM, Freestone GC, Gitnick D, Gupta V, Hoffmaster C, Kaplan AP, Kennedy MR, Lee D, Limberis J, Ly K, Mak CC, Masatsugu B, Morse AC, Na J, Neul D, Nikpur J, Renick J, Sebring K, Sevidal S, Tabatabaei A, Wen J, Xia S, Yan Y, Yoder ZW, Zook D, Peters M, Breitenbucher JG. Azetidine-based selective glycine transporter-1 (GlyT1) inhibitors with memory enhancing properties. Bioorg Med Chem Lett. 2020;30:127214. https://doi.org/10.1016/j.bmcl.2020.127214.

4. Liu W, Jiang X, Zu Y, Yang Y, Liu Y, Sun X, Xu Z, Ding H, Zhao Q. A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem. 2020;200:112447. https://doi.org/10.1016/j.ejmech.2020.112447.

5. Xu Q, Hu M, Li J, Ma X, Chu Z, Zhu Q, Zhang Y, Zhu P, Huang Y, He G. Discovery of novel brain-penetrant GluN2B NMDAR antagonists via pharmacophore-merging strategy as anti-stroke therapeutic agents. Eur J Med Chem. 2022;227:113876. https://doi.org/10.1016/j.ejmech.2021.113876.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3