Simultaneous measurement of duloxetine hydrochloride and avanafil at dual-wavelength using novel ecologically friendly TLC-densitometric method: application to synthetic mixture and spiked human plasma with evaluation of greenness and blueness

Author:

Derayea Sayed M.,Elhamdy Hadeer A.,Oraby Mohamed,El-Din Khalid M. Badr

Abstract

AbstractThe simultaneous assay of duloxetine hydrochloride (DLX) and avanafil (AVN) in their pure forms, synthetic mixtures, and spiked human plasma was achieved using a novel, eco-friendly, sensitive, and specific HPTLC methodology that have been established and validated. Measuring the levels of co-administered antidepressants and sexual stimulants in biological fluids is an important step for individuals with depression and sexual problems. Separation was performed successfully using pre-coated silica gel 60-F254 as a stationary phase and a mobile phase composed of methanol, acetone, and 33% ammonia (8:2:0.05, v/v/v). Compact bands were produced by the optimized mobile phase that was chosen for development (Rf values were 0.23 and 0.75 for DLX and AVN, individually) after dual-wavelength detection for DLX and AVN at 232 and 253 nm, respectively. The results of polynomial regression analysis were exceptional (r = 0.9999 for both medicines) over concentration ranges of 5-800 and 10-800ng/spot for DLX and AVN, respectively. The quantitation limits were 4.69 and 9.53 ng/spot (0.31 and 0.94 µg/mL), whereas the detection limits were 1.55 and 3.15 ng/spot (0.63 and 1.91 µg/mL), for DLX and AVN, respectively. The International Council for Harmonization (ICH) criteria served as the basis for validating the established approach. Moreover, the proposed technique was evaluated in terms of greenness using four contemporary ecological metrics: The Analytical Greenness software (AGREE), the Green Analytical Procedure Index (GAPI), Eco-Scale, and the National Environmental Method Index (NEMI). Additionally, the Blue Applicability Grade Index (BAGI), a newly developed tool for evaluating the practicality (blueness) of procedures, was taken into consideration when evaluating the sustainability levels of the established approach.

Funder

Sohag University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3