Data mining polycystic ovary morphology in electronic medical record ultrasound reports

Author:

Cheng Jay JojoORCID,Mahalingaiah Shruthi

Abstract

Abstract Background Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenemia, oligo-anovulation, and numerous ovarian cysts. Hospital electronic medical records provide an avenue for investigating polycystic ovary morphology commonly seen in PCOS at a large scale. The purpose of this study was to develop and evaluate the performance of two machine learning text algorithms, for classification of polycystic ovary morphology (PCOM) in pelvic ultrasounds. Methods Pelvic ultrasound reports from patients at Boston Medical Center between October 1, 2003 and December 12, 2016 were included for analysis, which resulted in 39,093 ultrasound reports from 25,535 unique women. Following the 2003 Rotterdam Consensus Criteria for polycystic ovary syndrome, 2000 randomly selected ultrasounds were expert labeled for PCOM status as present, absent, or unidentifiable (not able to be determined from text alone). An ovary was marked as having PCOM if there was mention of numerous peripheral follicles or if the volume was greater than 10 ml in the absence of a dominant follicle or other confounding pathology. Half of the labeled data was used to develop and refine the algorithms, and the other half was used as a test set for evaluating its accuracy. Results On the evaluation set of 1000 random US reports, the accuracy of the classifiers were 97.6% (95% CI: 96.5, 98.5%) and 96.1% (94.7, 97.2%). Both models were more adept at identifying PCOM-absent ultrasounds than either PCOM-unidentifiable or PCOM-present ultrasounds. The two classifiers estimated prevalence of PCOM within the whole set of 39,093 ultrasounds to be 44% PCOM-absent, 32% PCOM-unidentifiable, and 24% PCOM-present. Conclusions Although accuracy measured on the test set and inter-rater agreement between the two classifiers (Cohen’s Kappa = 0.988) was high, a major limitation of our approach is that it uses the ultrasound report text as a proxy and does not directly count follicles from the ultrasound images themselves.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institutes of Health, Reproductive Scientist Development Program

Publisher

Springer Science and Business Media LLC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3