Author:
Nair Ardra,Chatley Geetika
Publisher
Springer Nature Switzerland
Reference20 articles.
1. Pedersen, S.D., Brar, S., Faris, P., Corenblum, B.: Polycystic ovary syndrome: validated questionnaire for use in diagnosis. Can. Fam. Phys. 53(6), 1041–1047 (2007). PMID: 17872783; PMCID: PMC1949220
2. Khan, A., Karim, N., Ainuddin, J.A., Fahim, M.F.: Polycystic ovarian syndrome: correlation between clinical hyperandrogenism, anthropometric, metabolic and endocrine parameters. Pak. J. Med. Sci. 35(5), 1227–1232 (2019). https://doi.org/10.12669/pjms.35.5.742. PMID: 31488983; PMCID: PMC6717481
3. Chauhan, P., Patil, P., Rane, N., Raundale, P., Kanakia, H.: Comparative analysis of machine learning algorithms for prediction of PCOS. In: 2021 International Conference on Communication information and Computing Technology (ICCICT), pp. 1–7. Mumbai, India (2021). https://doi.org/10.1109/ICCICT50803.2021.9510128
4. Karia, A., Poojary, A., Tiwari, A., Sequeira, L., Sokhi, M.K.: BeRedy (Period Tracker & PCOS diagnosis). In: 2023 International Conference on Communication System, Computing and IT Applications (CSCITA), pp. 142–147. Mumbai, India (2023).https://doi.org/10.1109/CSCITA55725.2023.10104755
5. Denny, A., Raj, A., Ashok, A., Ram, C.M., George, R.: i-HOPE: detection and prediction system for polycystic ovary syndrome (PCOS) using machine learning techniques. In: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 673–678. Kochi, India (2019).https://doi.org/10.1109/TENCON.2019.8929674