The distribution of a germline methylation marker suggests a regional mechanism of LINE-1 silencing by the piRNA-PIWI system

Author:

Sigurdsson Martin I,Smith Albert V,Bjornsson Hans T,Jonsson Jon J

Abstract

Abstract Background A defense system against transposon activity in the human germline based on PIWI proteins and piRNA has recently been discovered. It represses the activity of LINE-1 elements via DNA methylation by a largely unknown mechanism. Based on the dispersed distribution of clusters of piRNA genes in a strand-specific manner on all human chromosomes, we hypothesized that this system might work preferentially on local and proximal sequences. We tested this hypothesis with a methylation-associated SNP (mSNP) marker which is based on the density of C-T transitions in CpG dinucleotides as a surrogate marker for germline methylation. Results We found significantly higher density of mSNPs flanking piRNA clusters in the human genome for flank sizes of 1-16 Mb. A dose-response relationship between number of piRNA genes and mSNP density was found for up to 16 Mb of flanking sequences. The chromosomal density of hypermethylated LINE-1 elements had a significant positive correlation with the chromosomal density of piRNA genes (r = 0.41, P = 0.05). Genome windows of 1-16 Mb containing piRNA clusters had significantly more hypermethylated LINE-1 elements than windows not containing piRNA clusters. Finally, the minimum distance to the next piRNA cluster was significantly shorter for hypermethylated LINE-1 compared to normally methylated elements (14.4 Mb vs 16.1 Mb). Conclusions Our observations support our hypothesis that the piRNA-PIWI system preferentially methylates sequences in close proximity to the piRNA clusters and perhaps physically adjacent sequences on other chromosomes. Furthermore they suggest that this proximity effect extends up to 16 Mb. This could be due to an unknown localization signal, transcription of piRNA genes near the nuclear membrane or the presence of an unknown RNA molecule that spreads across the chromosome and targets the methylation directed by the piRNA-PIWI complex. Our data suggest a region specific molecular mechanism which can be sought experimentally.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3