Discovery, linkage disequilibrium and association analyses of polymorphisms of the immune complement inhibitor, decay-accelerating factor gene (DAF/CD55) in type 1 diabetes
-
Published:2006-04-20
Issue:1
Volume:7
Page:
-
ISSN:1471-2156
-
Container-title:BMC Genetics
-
language:en
-
Short-container-title:BMC Genet
Author:
Taniguchi Hidenori,Lowe Christopher E,Cooper Jason D,Smyth Deborah J,Bailey Rebecca,Nutland Sarah,Healy Barry C,Lam Alex C,Burren Oliver,Walker Neil M,Smink Luc J,Wicker Linda S,Todd John A
Abstract
Abstract
Background
Type 1 diabetes (T1D) is a common autoimmune disease resulting from T-cell mediated destruction of pancreatic beta cells. Decay accelerating factor (DAF, CD55), a glycosylphosphatidylinositol-anchored membrane protein, is a candidate for autoimmune disease susceptibility based on its role in restricting complement activation and evidence that DAF expression modulates the phenotype of mice models for autoimmune disease. In this study, we adopt a linkage disequilibrium (LD) mapping approach to test for an association between the DAF gene and T1D.
Results
Initially, we used HapMap II genotype data to examine LD across the DAF region. Additional resequencing was required, identifying 16 novel polymorphisms. Combining both datasets, a LD mapping approach was adopted to test for association with T1D. Seven tag SNPs were selected and genotyped in case-control (3,523 cases and 3,817 controls) and family (725 families) collections.
Conclusion
We obtained no evidence of association between T1D and the DAF region in two independent collections. In addition, we assessed the impact of using only HapMap II genotypes for the selection of tag SNPs and, based on this study, found that HapMap II genotypes may require additional SNP discovery for comprehensive LD mapping of some genes in common disease.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference51 articles.
1. Risch N: Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet. 1987, 40: 1-14. 2. Cucca F, Lampis R, Congia M, Angius E, Nutland S, Bain SC, Barnett AH, Todd JA: A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Hum Mol Genet. 2001, 10: 2025-2037. 10.1093/hmg/10.19.2025. 3. Bell GI, Horita S, Karam JH: A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes. 1984, 33: 176-183. 4. Barratt BJ, Payne F, Lowe CE, Hermann R, Healy BC, Harold D, Concannon P, Gharani N, McCarthy MI, Olavesen MG, McCormack R, Guja C, Ionescu-Tirgoviste C, Undlien DE, Ronningen KS, Gillespie KM, Tuomilehto-Wolf E, Tuomilehto J, Bennett ST, Clayton DG, Cordell HJ, Todd JA: Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes. 2004, 53: 1884-1889. 5. Nistico L, Buzzetti R, Pritchard LE, Van der Auwera B, Giovannini C, Bosi E, Larrad MT, Rios MS, Chow CC, Cockram CS, Jacobs K, Mijovic C, Bain SC, Barnett AH, Vandewalle CL, Schuit F, Gorus FK, Tosi R, Pozzilli P, Todd JA: The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet. 1996, 5: 1075-1080. 10.1093/hmg/5.7.1075.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|