Author:
Ibeagha-Awemu Eveline M,Lee Jai-Wei,Ibeagha Aloysius E,Zhao Xin
Abstract
Abstract
Background
CD14 is an important player in host innate immunity in that it confers lipopolysaccharide sensitivity to cell types like neutrophils, monocytes and macrophages. The study was aimed at characterizing the CD14 gene of cattle for sequence variations and to determine the effect of variations on the expression of the protein on the surfaces of monocytes and neutrophils in healthy dairy cows.
Results
Five SNPs were identified: two within the coding regions (g.A1908G and g.A2318G, numbering is according to GenBank No. EU148609), one in the 5' (g.C1291T) and two in the 3' (g.A2601G and g.G2621T) untranslated regions. SNP 1908 changes amino acid 175 of the protein (p.Asn175Asp, numbering is according to GenBank No. ABV68569), while SNP 2318 involves a synonymous codon change. Coding region SNPs characterized three gene alleles A (GenBank No. EU148609), A
1 (GenBank No. EU148610) and B (GenBank No. EU148611) and two deduced protein variants A (ABV68569 and ABV68570) and B (ABV68571). Protein variant A is more common in the breeds analyzed. All SNPs gave rise to 3 haplotypes for the breeds. SNP genotype 1908AG was significantly (P < 0.01) associated with a higher percentage of neutrophils expressing more CD14 molecules on their surfaces. The promoter region contains several transcription factor binding sites, including multiple AP-1 and SP1 sites and there is a high conservation of amino acid residues between the proteins of closely related species.
Conclusion
The study has provided information on sequence variations within the CD14 gene and proteins of cattle. The SNP responsible for an amino acid exchange may play an important role in the expression of CD14 on the surfaces of neutrophils. Further observations involving a larger sample size are required to validate our findings. Our SNP and association analyses have provided baseline information that may be used at defining the role of CD14 in mediating bacterial infections. The computational analysis on the promoter and comparative analysis with other species has revealed regions of regulatory element motifs that may indicate important regulatory effects on the gene.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference36 articles.
1. Chen YC, Wang SY, King CC: Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol. 1999, 73: 2650-2657.
2. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM: Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity. 1996, 4: 407-4. 10.1016/S1074-7613(00)80254-X. 414
3. Antal-Szalmas P, Van Strijp JAG, Weersink AJL, Verhoef J, Van Kessel KPM: Quantitation of surface CD14 on human monocytes and neutrophils. J Leukoc Biol. 1997, 61: 721-728.
4. Paape MJ, Lilius EM, Wiitanen PA, Kontio MP, Miller RH: Intrammary defense against infections induced by Escherichia coli in cows. Am J Vet Res. 1996, 57: 477-482.
5. Ulevitch RJ, Tobias PS: Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995, 13: 437-457. 10.1146/annurev.iy.13.040195.002253.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献