Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows
-
Published:2022-10-25
Issue:4
Volume:65
Page:371-384
-
ISSN:2363-9822
-
Container-title:Archives Animal Breeding
-
language:en
-
Short-container-title:Arch. Anim. Breed.
Author:
Zemanova MonikaORCID, Langova Lucie, Novotná Ivana, Dvorakova Petra, Vrtkova Irena, Havlicek ZdenekORCID
Abstract
Abstract. Mastitis is one of the most important diseases of the mammary gland. The increased incidence of this disease in cows is due to the breeding of dairy cattle for higher yields, which is accompanied by an increased susceptibility to mastitis. Therefore, the difficulty involved with preventing this disease has increased. An integral part of current research is the elimination of mastitis in order to reduce the consumption of antibiotic drugs, thereby reducing the resistance of microorganisms and decreasing companies' economic losses due to mastitis (i.e. decreased milk yield, increased drug costs, and reduced milk supply). Susceptibility to mastitis is based on dairy cows' immunity, health, nutrition, and welfare. Thus, it is important to understand the immune processes in the body in order to increase the resistance of animals. Recently, various studies have focused on the selection of mastitis resistance genes. An important point is also the prevention of mastitis. This publication aims to describe the physiology of the mammary gland along with its immune mechanisms and to approximate their connection with potential mastitis resistance genes. This work describes various options for mastitis elimination and focuses on genetic selection and a closer specification of resistance genes to mastitis. Among the most promising resistance genes for mastitis, we consider CD14, CXCR1, lactoferrin, and lactoglobulin.
Publisher
Copernicus GmbH
Reference149 articles.
1. Alain, K., Karrow, N. A., Thibault, C., St-Pierre, J., Lessard, M., and Bissonnette, N.: Osteopontin: an early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis, BMC Genomics, 10, 1–17, https://doi.org/10.1186/1471-2164-10-444, 2019. 2. Alhussien, M. N. and Dang, A. K.: Interaction between stress hormones and phagocytic cells and its effect on the health status of dairy cows: A review, Vet. World, 13, 1837–1848, https://doi.org/10.14202/vetworld.2020.1837-1848, 2020. 3. Alim, M. A., Sun, D., Zhang, Y., Zhang, Y., Zhang, Q., and Liu, L.: DNA Polymorphisms in the lactoglobulin ans K-casein Gense Associated with Milk Production Traits on Dairy Cattle, Bioresearch Communications-(BRC), 1, 82–86, https://bioresearchcommunications.com/index.php/brc/article/view/169 (last access: 5 October 2022), 2015. 4. Akhtar, M., Guo, S., Guo, Y. F., Zahoor, A., Shaukat, A., Chen, Y., and Guo, M.: Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis, Acta Trop., 207, 105458, https://doi.org/10.1016/j.actatropica.2020.105458, 2020. 5. Alekish, M., Ababneh, H., Ismail, Z., and Alshehabat, M.: The relationship between lactoferrin gene polymorphism and subclinical mastitis in Awassi ewes, J. Anim. Plant Sci., 29, 1193–1197, 2019.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|